
Item

- name: string
- sell_in: int
 - quality: int

+Item(string, int, int)
+toString()/_repr_: String

NormalItem

+NormalItem(string, int, int)
+updateQuality(): void

BackstageItem (like Backstage
passes, though no idea what it is)

+BackstageItem(string, int, int)
+updateQuality(): void

LegendItem (Like Sulfuras)

- LEGENDARY_QUALITY: int = 80
{readOnly}

+LegendItem(string, int, int)
+updateQuality(): void

AgedItem (Like Aged Brie)

+AgedItem(string, int, int)
+updateQuality(): void

ConjuredItem

+ConjuredItem(string, int,
int)

+updateQuality(): void

<<interface>>Updateable

+updateQuality(): void

GildedRose

+GildedRose()
+items(): List<Updateable>

+updateQuality(): void
+addItem(Updateable): void

+toString: String

ItemWrapper{abstract}

- MAX_QUALITY: int = 50 {readOnly}
- MIN_QUALITY: int = 0 {readOnly}

+getQuality(): int
+getName(): string

+getSellIn(): int
+getItem(): Item

+updateQuality(): void
+setSellIn(int): void

+computeQuality(int): void ? check
boundary

Major issues: The original code squeezes everything in one big
if-else method inside the GildedRose class. If there comes
another special item, we need to add it somewhere inside the
if-else statement. If that happens frequently, it's hard to maintain
and easy to break existing logic.
Design choices: We have an abstract ItemWrapper class that
wraps the original Item using composition (since we can't modify
Item). Different kinds of items inherit from it and have their own
way to update quality. Also, we have an Updateable interface to
enforce the updateQuality() method. Now, if a new type of item
comes in, just add another item class that inherits from
ItemWrapper. The GildedRose class just loops through items and
calls updateQuality() ? it doesn't care what type they are.
Potential drawbacks:
-More classes to manage compared to one big method
-Need some way (like a factory) to create the right wrapper
based on item name
-If item types share similar logic, might end up with some
duplicated code
-initial setup is more complex even though future changes are
easier

	cs5500 - Page 1
	Page 1

