Gilded Rose Refactoring — UML Diagram and Design Explanation

Name: Pooja Malakappa Nuchchi

Issues with Original Code

o Multiple nested if/else statements: The code goes like 4-5 levels deep with
conditions inside conditions. Makes hard to follow and requires multiple rounds
of reading.

o Everything is crammed into one method: This one function is trying to handle the
logic for all Strategies (e.g.: Aged Brie) at once.

e Adding new items is difficult: If I wanted to add a new item type like "Conjured,"
I have to go into this already messy method and add even more if/else statements.
Risk of breaking something that’s already working.

My Solution: Strategy Pattern

UML Diagram

GILDED ROSE REFACTORING

Item

- name: str
- sellL_in: int
- quality: int

repr__(): str

[

uses
']

<<interfaces>

GildedRose

tems: List[ltem]
STRATEGY_MAP

UpdataStratagy

MAX_QUALITY: int
MIN_QUALITY: int

DEFAULT_STRATEGY = uesa " update(item: Item): void
decrease_quality(item): void
update_quality(): void increase_quality(item): void
get_strategy(item): UpdateStrategy is_expired(item): bool
i
implements
STRATERGIES I
T ) 1 T T
NormalltemStrategy AgedBrieStrategy BackstagePassStrategy SulfurasStrategy ConjureditemStrategy

update(item): void

update(item): void

update(item): void

update(item): vold

update(item): vold

Why Strategy Pattern?

Instead of one giant method with multiple if/else checks, each item type gets its own class. Each
strategy class is short, easy to read, and can be tested independently. Adding new items requires
minimal changes to existing code. Each item type's logic is in its own file.



Explanation

o UpdateStrategy (interface): Defines methods like increasing or decreasing
quality.

o Strategy classes: NormalltemStrategy, AgedBrieStrategy,
BackstagePassStrategy, SulfurasStrategy, ConjuredltemStrategy - each handles its
own item type.

o Item class: Stays the same.

e GildedRose class: It uses UpdateStrategy and Item. Uses the appropriate strategy
to update each item.

Potential Drawbacks of Strategy Pattern
e Need to look at multiple files to understand the whole system.

o Ifthere are fixed number of Items, its not a good idea of using a Strategy Pattern.
It is best suited if new item types need to be added later.



