
Gilded Rose Refactoring – UML Diagram and Design Explanation 

 
Name: Pooja Malakappa Nuchchi 

 

Issues with Original Code 

• Multiple nested if/else statements: The code goes like 4-5 levels deep with 

conditions inside conditions. Makes hard to follow and requires multiple rounds 

of reading. 

• Everything is crammed into one method: This one function is trying to handle the 

logic for all Strategies (e.g.: Aged Brie) at once. 

• Adding new items is difficult: If I wanted to add a new item type like "Conjured," 

I have to go into this already messy method and add even more if/else statements. 

Risk of breaking something that’s already working. 

My Solution: Strategy Pattern 
 

UML Diagram 

 

Why Strategy Pattern? 

Instead of one giant method with multiple if/else checks, each item type gets its own class. Each 

strategy class is short, easy to read, and can be tested independently. Adding new items requires 

minimal changes to existing code. Each item type's logic is in its own file. 

 

 

 



Explanation 

• UpdateStrategy (interface): Defines methods like increasing or decreasing 

quality. 

• Strategy classes: NormalItemStrategy, AgedBrieStrategy, 

BackstagePassStrategy, SulfurasStrategy, ConjuredItemStrategy - each handles its 

own item type. 

• Item class: Stays the same. 

• GildedRose class: It uses UpdateStrategy and Item. Uses the appropriate strategy 

to update each item. 

 

Potential Drawbacks of Strategy Pattern 

• Need to look at multiple files to understand the whole system. 

• If there are fixed number of Items, its not a good idea of using a Strategy Pattern. 

It is best suited if new item types need to be added later. 

 

 


