GildedRose-Refactoring-Kata/.venv/lib/python3.12/site-packages/mrjob-0.7.4.dist-info/METADATA
2025-06-22 13:36:01 +05:30

205 lines
7.1 KiB
Plaintext

Metadata-Version: 2.1
Name: mrjob
Version: 0.7.4
Summary: Python MapReduce framework
Home-page: http://github.com/Yelp/mrjob
Author: David Marin
Author-email: dm@davidmarin.org
License: Apache
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Natural Language :: English
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Topic :: System :: Distributed Computing
Provides: mrjob
Requires-Dist: PyYAML (>=3.10)
Provides-Extra: aws
Requires-Dist: boto3 (>=1.10.0) ; extra == 'aws'
Requires-Dist: botocore (>=1.13.26) ; extra == 'aws'
Provides-Extra: google
Requires-Dist: google-cloud-dataproc (<=1.1.0,>=0.3.0) ; extra == 'google'
Requires-Dist: google-cloud-logging (>=1.9.0) ; extra == 'google'
Requires-Dist: google-cloud-storage (>=1.13.1) ; extra == 'google'
Provides-Extra: rapidjson
Requires-Dist: python-rapidjson ; extra == 'rapidjson'
Provides-Extra: simplejson
Requires-Dist: simplejson ; extra == 'simplejson'
Provides-Extra: ujson
Requires-Dist: ujson ; extra == 'ujson'
mrjob: the Python MapReduce library
===================================
.. image:: https://github.com/Yelp/mrjob/raw/master/docs/logos/logo_medium.png
mrjob is a Python 2.7/3.4+ package that helps you write and run Hadoop
Streaming jobs.
`Stable version (v0.7.4) documentation <http://mrjob.readthedocs.org/en/stable/>`_
`Development version documentation <http://mrjob.readthedocs.org/en/latest/>`_
.. image:: https://travis-ci.org/Yelp/mrjob.png
:target: https://travis-ci.org/Yelp/mrjob
mrjob fully supports Amazon's Elastic MapReduce (EMR) service, which allows you
to buy time on a Hadoop cluster on an hourly basis. mrjob has basic support for Google Cloud Dataproc (Dataproc)
which allows you to buy time on a Hadoop cluster on a minute-by-minute basis. It also works with your own
Hadoop cluster.
Some important features:
* Run jobs on EMR, Google Cloud Dataproc, your own Hadoop cluster, or locally (for testing).
* Write multi-step jobs (one map-reduce step feeds into the next)
* Easily launch Spark jobs on EMR or your own Hadoop cluster
* Duplicate your production environment inside Hadoop
* Upload your source tree and put it in your job's ``$PYTHONPATH``
* Run make and other setup scripts
* Set environment variables (e.g. ``$TZ``)
* Easily install python packages from tarballs (EMR only)
* Setup handled transparently by ``mrjob.conf`` config file
* Automatically interpret error logs
* SSH tunnel to hadoop job tracker (EMR only)
* Minimal setup
* To run on EMR, set ``$AWS_ACCESS_KEY_ID`` and ``$AWS_SECRET_ACCESS_KEY``
* To run on Dataproc, set ``$GOOGLE_APPLICATION_CREDENTIALS``
* No setup needed to use mrjob on your own Hadoop cluster
Installation
------------
``pip install mrjob``
As of v0.7.0, Amazon Web Services and Google Cloud Services are optional
depedencies. To use these, install with the ``aws`` and ``google`` targets,
respectively. For example:
``pip install mrjob[aws]``
A Simple Map Reduce Job
-----------------------
Code for this example and more live in ``mrjob/examples``.
.. code-block:: python
"""The classic MapReduce job: count the frequency of words.
"""
from mrjob.job import MRJob
import re
WORD_RE = re.compile(r"[\w']+")
class MRWordFreqCount(MRJob):
def mapper(self, _, line):
for word in WORD_RE.findall(line):
yield (word.lower(), 1)
def combiner(self, word, counts):
yield (word, sum(counts))
def reducer(self, word, counts):
yield (word, sum(counts))
if __name__ == '__main__':
MRWordFreqCount.run()
Try It Out!
-----------
::
# locally
python mrjob/examples/mr_word_freq_count.py README.rst > counts
# on EMR
python mrjob/examples/mr_word_freq_count.py README.rst -r emr > counts
# on Dataproc
python mrjob/examples/mr_word_freq_count.py README.rst -r dataproc > counts
# on your Hadoop cluster
python mrjob/examples/mr_word_freq_count.py README.rst -r hadoop > counts
Setting up EMR on Amazon
------------------------
* create an `Amazon Web Services account <http://aws.amazon.com/>`_
* Get your access and secret keys (click "Security Credentials" on
`your account page <http://aws.amazon.com/account/>`_)
* Set the environment variables ``$AWS_ACCESS_KEY_ID`` and
``$AWS_SECRET_ACCESS_KEY`` accordingly
Setting up Dataproc on Google
-----------------------------
* `Create a Google Cloud Platform account <http://cloud.google.com/>`_, see top-right
* `Learn about Google Cloud Platform "projects" <https://cloud.google.com/docs/overview/#projects>`_
* `Select or create a Cloud Platform Console project <https://console.cloud.google.com/project>`_
* `Enable billing for your project <https://console.cloud.google.com/billing>`_
* Go to the `API Manager <https://console.cloud.google.com/apis>`_ and search for / enable the following APIs...
* Google Cloud Storage
* Google Cloud Storage JSON API
* Google Cloud Dataproc API
* Under Credentials, **Create Credentials** and select **Service account key**. Then, select **New service account**, enter a Name and select **Key type** JSON.
* Install the `Google Cloud SDK <https://cloud.google.com/sdk/>`_
Advanced Configuration
----------------------
To run in other AWS regions, upload your source tree, run ``make``, and use
other advanced mrjob features, you'll need to set up ``mrjob.conf``. mrjob looks
for its conf file in:
* The contents of ``$MRJOB_CONF``
* ``~/.mrjob.conf``
* ``/etc/mrjob.conf``
See `the mrjob.conf documentation
<https://mrjob.readthedocs.io/en/latest/guides/configs-basics.html>`_ for more
information.
Project Links
-------------
* `Source code <http://github.com/Yelp/mrjob>`__
* `Documentation <https://mrjob.readthedocs.io/en/latest/>`_
* `Discussion group <http://groups.google.com/group/mrjob>`_
Reference
---------
* `Hadoop Streaming <http://hadoop.apache.org/docs/stable1/streaming.html>`_
* `Elastic MapReduce <http://aws.amazon.com/documentation/elasticmapreduce/>`_
* `Google Cloud Dataproc <https://cloud.google.com/dataproc/overview>`_
More Information
----------------
* `PyCon 2011 mrjob overview <http://blip.tv/pycon-us-videos-2009-2010-2011/pycon-2011-mrjob-distributed-computing-for-everyone-4898987/>`_
* `Introduction to Recommendations and MapReduce with mrjob <http://aimotion.blogspot.com/2012/08/introduction-to-recommendations-with.html>`_
(`source code <https://github.com/marcelcaraciolo/recsys-mapreduce-mrjob>`__)
* `Social Graph Analysis Using Elastic MapReduce and PyPy <http://postneo.com/2011/05/04/social-graph-analysis-using-elastic-mapreduce-and-pypy>`_
Thanks to `Greg Killion <mailto:greg@blind-works.net>`_
(`ROMEO ECHO_DELTA <http://www.romeoechodelta.net/>`_) for the logo.